TypeError: Descriptors cannot not be created directly.
If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0.
If you cannot immediately regenerate your protos, some other possible workarounds are:
1. Downgrade the protobuf package to 3.20.x or lower.
2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower).
2022-10-30 21:46:59.982971: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2022-10-30 21:47:00.006072: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 3699850000 Hz
2022-10-30 21:47:00.006792: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55d1633f2750 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2022-10-30 21:47:00.006808: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version
2022-10-30 21:47:00.008473: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1
2022-10-30 21:47:00.105474: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2022-10-30 21:47:00.105762: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55d1635c3f60 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2022-10-30 21:47:00.105784: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): NVIDIA GeForce GTX 1080 Ti, Compute Capability 6.1
2022-10-30 21:47:00.105990: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2022-10-30 21:47:00.106166: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: NVIDIA GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.582
pciBusID: 0000:01:00.0
2022-10-30 21:47:00.106369: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.0
2022-10-30 21:47:00.107666: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10.0
2022-10-30 21:47:00.108687: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10.0
2022-10-30 21:47:00.108929: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10.0
2022-10-30 21:47:00.111721: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10.0
2022-10-30 21:47:00.112861: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10.0
2022-10-30 21:47:00.116688: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2022-10-30 21:47:00.116826: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2022-10-30 21:47:00.117018: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2022-10-30 21:47:00.117127: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2022-10-30 21:47:00.117170: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.0
2022-10-30 21:47:00.117421: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2022-10-30 21:47:00.117435: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] 0
2022-10-30 21:47:00.117446: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N
2022-10-30 21:47:00.117529: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2022-10-30 21:47:00.117678: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2022-10-30 21:47:00.117813: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/device:GPU:0 with 10361 MB memory) -> physical GPU (device: 0, name: NVIDIA GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1)
[name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 10409023728072267246
, name: "/device:XLA_CPU:0"
device_type: "XLA_CPU"
memory_limit: 17179869184
locality {
}
incarnation: 7385902535139826165
physical_device_desc: "device: XLA_CPU device"
, name: "/device:XLA_GPU:0"
device_type: "XLA_GPU"
memory_limit: 17179869184
locality {
}
incarnation: 7109357658802926795
physical_device_desc: "device: XLA_GPU device"
, name: "/device:GPU:0"
device_type: "GPU"
memory_limit: 10864479437
locality {
bus_id: 1
links {
}
}
incarnation: 6537278509263123219
physical_device_desc: "device: 0, name: NVIDIA GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1"
]
Could not load dynamic library 'libcudart.so.10.0' - 知乎
https://medium.com/analytics-vidhya/solution-to-tensorflow-2-not-using-gpu-119fb3e04daa
How to tell if tensorflow is using gpu acceleration from inside python shell? - Stack Overflow
到此这篇关于搭建Pytorch 和 Tensorflow v1 兼容的环境的文章就介绍到这了,更多相关Pytorch 和 Tensorflow建环境内容请搜索中国红客联盟以前的文章或继续浏览下面的相关文章希望大家以后多多支持中国红客联盟!