该篇文章将以实战形式演示利用Python结合Opencv实现车牌识别,全程涉及图像预处理、车牌定位、车牌分割、通过模板匹配识别结果输出。该项目对于智能交通、车辆管理等领域具有实际应用价值。通过自动识别车牌号码,可以实现车辆追踪、违章查询、停车场管理等功能,提高交通管理的效率和准确性。可用于车牌识别技术学习。
技术要点:
- OpenCV:用于图像处理和计算机视觉任务。
- Python:作为编程语言,具有简单易学、资源丰富等优点。
- 图像处理技术:如灰度化、噪声去除、边缘检测、形态学操作、透视变换等。
1 导入相关模块
- import cv2
- from matplotlib import pyplot as plt
- import os
- import numpy as np
- from PIL import ImageFont, ImageDraw, Image
复制代码
2 相关功能函数定义
2.1 彩色图片显示函数(plt_show0)
- def plt_show0(img):
- b,g,r = cv2.split(img)
- img = cv2.merge([r, g, b])
- plt.imshow(img)
- plt.show()
复制代码
cv2与plt的图像通道不同:cv2为[b,g,r];plt为[r, g, b]
2.2 灰度图片显示函数(plt_show)
- def plt_show(img):
- plt.imshow(img,cmap='gray')
- plt.show()
复制代码
2.3 图像去噪函数(gray_guss)
- def gray_guss(image):
- image = cv2.GaussianBlur(image, (3, 3), 0)
- gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
- return gray_image
复制代码
此处演示使用高斯模糊去噪。
cv2.GaussianBlur参数说明:
- src:输入图像,可以是任意数量的通道,这些通道可以独立处理,但深度应为 CV_8U、CV_16U、CV_16S、CV_32F 或 CV_64F。
- ksize:高斯核的大小,必须是正奇数,例如 (3, 3)、(5, 5) 等。如果 ksize 的值为零,那么它会根据 sigmaX 和 sigmaY 的值来计算。
- sigmaX:X 方向上的高斯核标准偏差。
- dst:输出图像,大小和类型与 src 相同。
- sigmaY:Y 方向上的高斯核标准偏差,如果 sigmaY 是零,那么它会与 sigmaX 的值相同。如果 sigmaY 是负数,那么它会从 ksize.width 和 ksize.height 计算得出。
- borderType:像素外插法,有默认值。
2 图像预处理
2.1 图片读取
- origin_image = cv2.imread('D:/image/car3.jpg')
复制代码
此处演示识别车牌原图:
2.2 高斯去噪
- origin_image = cv2.imread('D:/image/car3.jpg')
- # 复制一张图片,在复制图上进行图像操作,保留原图
- image = origin_image.copy()
- gray_image = gray_guss(image)
复制代码
2.3 边缘检测
- Sobel_x = cv2.Sobel(gray_image, cv2.CV_16S, 1, 0)
- absX = cv2.convertScaleAbs(Sobel_x)
- image = absX
复制代码
x方向上的边缘检测(增强边缘信息)。
2.4 阈值化
- # 图像阈值化操作——获得二值化图
- ret, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU)
- # 显示灰度图像
- plt_show(image)
复制代码
运行结果:
3 车牌定位
3.1 区域选择
- kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (30, 10))
- image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernelX,iterations = 1)
- # 显示灰度图像
- plt_show(image)
复制代码
从图像中提取对表达和描绘区域形状有意义的图像分量。
运行结果:
3.2 形态学操作
- # 腐蚀(erode)和膨胀(dilate)
- kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (50, 1))
- kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 20))
- #x方向进行闭操作(抑制暗细节)
- image = cv2.dilate(image, kernelX)
- image = cv2.erode(image, kernelX)
- #y方向的开操作
- image = cv2.erode(image, kernelY)
- image = cv2.dilate(image, kernelY)
- # 中值滤波(去噪)
- image = cv2.medianBlur(image, 21)
- # 显示灰度图像
- plt_show(image)
复制代码
使用膨胀和腐蚀操作来突出车牌区域。
运行结果:
3.3 轮廓检测
- contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
- for item in contours:
- rect = cv2.boundingRect(item)
- x = rect[0]
- y = rect[1]
- weight = rect[2]
- height = rect[3]
- # 根据轮廓的形状特点,确定车牌的轮廓位置并截取图像
- if (weight > (height * 3)) and (weight < (height * 4.5)):
- image = origin_image[y:y + height, x:x + weight]
- plt_show(image)
复制代码
4 车牌字符分割
4.1 高斯去噪
- # 图像去噪灰度处理
- gray_image = gray_guss(image)
复制代码
4.2 阈值化
- ret, image = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
- plt_show(image)
复制代码
运行结果:
4.3 膨胀操作
- #膨胀操作
- kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (4, 4))
- image = cv2.dilate(image, kernel)
- plt_show(image)
复制代码
运行结果:
4.4 车牌号排序
- words = sorted(words,key=lambda s:s[0],reverse=False)
- i = 0
- #word中存放轮廓的起始点和宽高
- for word in words:
- # 筛选字符的轮廓
- if (word[3] > (word[2] * 1.5)) and (word[3] < (word[2] * 5.5)) and (word[2] > 10):
- i = i+1
- if word[2] < 15:
- splite_image = image[word[1]:word[1] + word[3], word[0]-word[2]:word[0] + word[2]*2]
- else:
- splite_image = image[word[1]:word[1] + word[3], word[0]:word[0] + word[2]]
- word_images.append(splite_image)
- print(i)
- print(words)
复制代码
运行结果:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- [[2, 0, 7, 70], [12, 6, 30, 55], [15, 7, 7, 9], [46, 6, 32, 55], [83, 30, 9, 9], [96, 7, 32, 55], [132, 8, 32, 55], [167, 8, 30, 54], [202, 62, 7, 6], [203, 7, 30, 55], [245, 7, 12, 54], [266, 0, 12, 70]]
复制代码
4.5 分割效果
- for i,j in enumerate(word_images):
- plt.subplot(1,7,i+1)
- plt.imshow(word_images[i],cmap='gray')
- plt.show()
复制代码
运行结果:
5 模板匹配
5.1 准备模板
- # 准备模板(template[0-9]为数字模板;)
- template = ['0','1','2','3','4','5','6','7','8','9',
- 'A','B','C','D','E','F','G','H','J','K','L','M','N','P','Q','R','S','T','U','V','W','X','Y','Z',
- '藏','川','鄂','甘','赣','贵','桂','黑','沪','吉','冀','津','晋','京','辽','鲁','蒙','闽','宁',
- '青','琼','陕','苏','皖','湘','新','渝','豫','粤','云','浙']
-
- # 读取一个文件夹下的所有图片,输入参数是文件名,返回模板文件地址列表
- def read_directory(directory_name):
- referImg_list = []
- for filename in os.listdir(directory_name):
- referImg_list.append(directory_name + "/" + filename)
- return referImg_list
-
- # 获得中文模板列表(只匹配车牌的第一个字符)
- def get_chinese_words_list():
- chinese_words_list = []
- for i in range(34,64):
- #将模板存放在字典中
- c_word = read_directory('D:/refer1/'+ template[i])
- chinese_words_list.append(c_word)
- return chinese_words_list
- chinese_words_list = get_chinese_words_list()
-
-
- # 获得英文模板列表(只匹配车牌的第二个字符)
- def get_eng_words_list():
- eng_words_list = []
- for i in range(10,34):
- e_word = read_directory('D:/refer1/'+ template[i])
- eng_words_list.append(e_word)
- return eng_words_list
- eng_words_list = get_eng_words_list()
-
-
- # 获得英文和数字模板列表(匹配车牌后面的字符)
- def get_eng_num_words_list():
- eng_num_words_list = []
- for i in range(0,34):
- word = read_directory('D:/refer1/'+ template[i])
- eng_num_words_list.append(word)
- return eng_num_words_list
- eng_num_words_list = get_eng_num_words_list()
复制代码
此处需提前准备各类字符模板。
5.2 匹配结果
- # 获得英文和数字模板列表(匹配车牌后面的字符)
- def get_eng_num_words_list():
- eng_num_words_list = []
- for i in range(0,34):
- word = read_directory('D:/refer1/'+ template[i])
- eng_num_words_list.append(word)
- return eng_num_words_list
- eng_num_words_list = get_eng_num_words_list()
-
-
- # 读取一个模板地址与图片进行匹配,返回得分
- def template_score(template,image):
- #将模板进行格式转换
- template_img=cv2.imdecode(np.fromfile(template,dtype=np.uint8),1)
- template_img = cv2.cvtColor(template_img, cv2.COLOR_RGB2GRAY)
- #模板图像阈值化处理——获得黑白图
- ret, template_img = cv2.threshold(template_img, 0, 255, cv2.THRESH_OTSU)
- # height, width = template_img.shape
- # image_ = image.copy()
- # image_ = cv2.resize(image_, (width, height))
- image_ = image.copy()
- #获得待检测图片的尺寸
- height, width = image_.shape
- # 将模板resize至与图像一样大小
- template_img = cv2.resize(template_img, (width, height))
- # 模板匹配,返回匹配得分
- result = cv2.matchTemplate(image_, template_img, cv2.TM_CCOEFF)
- return result[0][0]
-
-
- # 对分割得到的字符逐一匹配
- def template_matching(word_images):
- results = []
- for index,word_image in enumerate(word_images):
- if index==0:
- best_score = []
- for chinese_words in chinese_words_list:
- score = []
- for chinese_word in chinese_words:
- result = template_score(chinese_word,word_image)
- score.append(result)
- best_score.append(max(score))
- i = best_score.index(max(best_score))
- # print(template[34+i])
- r = template[34+i]
- results.append(r)
- continue
- if index==1:
- best_score = []
- for eng_word_list in eng_words_list:
- score = []
- for eng_word in eng_word_list:
- result = template_score(eng_word,word_image)
- score.append(result)
- best_score.append(max(score))
- i = best_score.index(max(best_score))
- # print(template[10+i])
- r = template[10+i]
- results.append(r)
- continue
- else:
- best_score = []
- for eng_num_word_list in eng_num_words_list:
- score = []
- for eng_num_word in eng_num_word_list:
- result = template_score(eng_num_word,word_image)
- score.append(result)
- best_score.append(max(score))
- i = best_score.index(max(best_score))
- # print(template[i])
- r = template[i]
- results.append(r)
- continue
- return results
-
-
- word_images_ = word_images.copy()
- # 调用函数获得结果
- result = template_matching(word_images_)
- print(result)
- print( "".join(result))
复制代码
运行结果:
- ['渝', 'B', 'F', 'U', '8', '7', '1']
- 渝BFU871
复制代码
“”.join(result)函数将列表转换为拼接好的字符串,方便结果显示
5.3 匹配效果展示
- height,weight = origin_image.shape[0:2]
- print(height)
- print(weight)
-
- image_1 = origin_image.copy()
- cv2.rectangle(image_1, (int(0.2*weight), int(0.75*height)), (int(weight*0.9), int(height*0.95)), (0, 255, 0), 5)
-
- #设置需要显示的字体
- fontpath = "font/simsun.ttc"
- font = ImageFont.truetype(fontpath,64)
- img_pil = Image.fromarray(image_1)
- draw = ImageDraw.Draw(img_pil)
- #绘制文字信息
- draw.text((int(0.2*weight)+25, int(0.75*height)), "".join(result), font = font, fill = (255, 255, 0))
- bk_img = np.array(img_pil)
- print(result)
- print( "".join(result))
- plt_show0(bk_img)
复制代码
运行结果:
6完整代码
- # 导入所需模块
- import cv2
- from matplotlib import pyplot as plt
- import os
- import numpy as np
- from PIL import ImageFont, ImageDraw, Image
- # plt显示彩色图片
- def plt_show0(img):
- b,g,r = cv2.split(img)
- img = cv2.merge([r, g, b])
- plt.imshow(img)
- plt.show()
-
- # plt显示灰度图片
- def plt_show(img):
- plt.imshow(img,cmap='gray')
- plt.show()
-
- # 图像去噪灰度处理
- def gray_guss(image):
- image = cv2.GaussianBlur(image, (3, 3), 0)
- gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
- return gray_image
-
- # 读取待检测图片
- origin_image = cv2.imread('D:/image/car3.jpg')
- # 复制一张图片,在复制图上进行图像操作,保留原图
- image = origin_image.copy()
- # 图像去噪灰度处理
- gray_image = gray_guss(image)
- # x方向上的边缘检测(增强边缘信息)
- Sobel_x = cv2.Sobel(gray_image, cv2.CV_16S, 1, 0)
- absX = cv2.convertScaleAbs(Sobel_x)
- image = absX
-
- # 图像阈值化操作——获得二值化图
- ret, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU)
- # 显示灰度图像
- plt_show(image)
- # 形态学(从图像中提取对表达和描绘区域形状有意义的图像分量)——闭操作
- kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (30, 10))
- image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernelX,iterations = 1)
- # 显示灰度图像
- plt_show(image)
-
-
- # 腐蚀(erode)和膨胀(dilate)
- kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (50, 1))
- kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 20))
- #x方向进行闭操作(抑制暗细节)
- image = cv2.dilate(image, kernelX)
- image = cv2.erode(image, kernelX)
- #y方向的开操作
- image = cv2.erode(image, kernelY)
- image = cv2.dilate(image, kernelY)
- # 中值滤波(去噪)
- image = cv2.medianBlur(image, 21)
- # 显示灰度图像
- plt_show(image)
-
- # 获得轮廓
- contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
-
- for item in contours:
- rect = cv2.boundingRect(item)
- x = rect[0]
- y = rect[1]
- weight = rect[2]
- height = rect[3]
- # 根据轮廓的形状特点,确定车牌的轮廓位置并截取图像
- if (weight > (height * 3)) and (weight < (height * 4.5)):
- image = origin_image[y:y + height, x:x + weight]
- plt_show(image)
-
-
- #车牌字符分割
- # 图像去噪灰度处理
- gray_image = gray_guss(image)
-
- # 图像阈值化操作——获得二值化图
- ret, image = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
- plt_show(image)
-
- #膨胀操作
- kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (4, 4))
- image = cv2.dilate(image, kernel)
- plt_show(image)
-
-
- # 查找轮廓
- contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
- words = []
- word_images = []
- #对所有轮廓逐一操作
- for item in contours:
- word = []
- rect = cv2.boundingRect(item)
- x = rect[0]
- y = rect[1]
- weight = rect[2]
- height = rect[3]
- word.append(x)
- word.append(y)
- word.append(weight)
- word.append(height)
- words.append(word)
- # 排序,车牌号有顺序。words是一个嵌套列表
- words = sorted(words,key=lambda s:s[0],reverse=False)
- i = 0
- #word中存放轮廓的起始点和宽高
- for word in words:
- # 筛选字符的轮廓
- if (word[3] > (word[2] * 1.5)) and (word[3] < (word[2] * 5.5)) and (word[2] > 10):
- i = i+1
- if word[2] < 15:
- splite_image = image[word[1]:word[1] + word[3], word[0]-word[2]:word[0] + word[2]*2]
- else:
- splite_image = image[word[1]:word[1] + word[3], word[0]:word[0] + word[2]]
- word_images.append(splite_image)
- print(i)
- print(words)
-
- for i,j in enumerate(word_images):
- plt.subplot(1,7,i+1)
- plt.imshow(word_images[i],cmap='gray')
- plt.show()
-
- #模版匹配
- # 准备模板(template[0-9]为数字模板;)
- template = ['0','1','2','3','4','5','6','7','8','9',
- 'A','B','C','D','E','F','G','H','J','K','L','M','N','P','Q','R','S','T','U','V','W','X','Y','Z',
- '藏','川','鄂','甘','赣','贵','桂','黑','沪','吉','冀','津','晋','京','辽','鲁','蒙','闽','宁',
- '青','琼','陕','苏','皖','湘','新','渝','豫','粤','云','浙']
-
- # 读取一个文件夹下的所有图片,输入参数是文件名,返回模板文件地址列表
- def read_directory(directory_name):
- referImg_list = []
- for filename in os.listdir(directory_name):
- referImg_list.append(directory_name + "/" + filename)
- return referImg_list
-
- # 获得中文模板列表(只匹配车牌的第一个字符)
- def get_chinese_words_list():
- chinese_words_list = []
- for i in range(34,64):
- #将模板存放在字典中
- c_word = read_directory('D:/refer1/'+ template[i])
- chinese_words_list.append(c_word)
- return chinese_words_list
- chinese_words_list = get_chinese_words_list()
-
-
- # 获得英文模板列表(只匹配车牌的第二个字符)
- def get_eng_words_list():
- eng_words_list = []
- for i in range(10,34):
- e_word = read_directory('D:/refer1/'+ template[i])
- eng_words_list.append(e_word)
- return eng_words_list
- eng_words_list = get_eng_words_list()
-
-
- # 获得英文和数字模板列表(匹配车牌后面的字符)
- def get_eng_num_words_list():
- eng_num_words_list = []
- for i in range(0,34):
- word = read_directory('D:/refer1/'+ template[i])
- eng_num_words_list.append(word)
- return eng_num_words_list
- eng_num_words_list = get_eng_num_words_list()
-
-
- # 读取一个模板地址与图片进行匹配,返回得分
- def template_score(template,image):
- #将模板进行格式转换
- template_img=cv2.imdecode(np.fromfile(template,dtype=np.uint8),1)
- template_img = cv2.cvtColor(template_img, cv2.COLOR_RGB2GRAY)
- #模板图像阈值化处理——获得黑白图
- ret, template_img = cv2.threshold(template_img, 0, 255, cv2.THRESH_OTSU)
- # height, width = template_img.shape
- # image_ = image.copy()
- # image_ = cv2.resize(image_, (width, height))
- image_ = image.copy()
- #获得待检测图片的尺寸
- height, width = image_.shape
- # 将模板resize至与图像一样大小
- template_img = cv2.resize(template_img, (width, height))
- # 模板匹配,返回匹配得分
- result = cv2.matchTemplate(image_, template_img, cv2.TM_CCOEFF)
- return result[0][0]
-
-
- # 对分割得到的字符逐一匹配
- def template_matching(word_images):
- results = []
- for index,word_image in enumerate(word_images):
- if index==0:
- best_score = []
- for chinese_words in chinese_words_list:
- score = []
- for chinese_word in chinese_words:
- result = template_score(chinese_word,word_image)
- score.append(result)
- best_score.append(max(score))
- i = best_score.index(max(best_score))
- # print(template[34+i])
- r = template[34+i]
- results.append(r)
- continue
- if index==1:
- best_score = []
- for eng_word_list in eng_words_list:
- score = []
- for eng_word in eng_word_list:
- result = template_score(eng_word,word_image)
- score.append(result)
- best_score.append(max(score))
- i = best_score.index(max(best_score))
- # print(template[10+i])
- r = template[10+i]
- results.append(r)
- continue
- else:
- best_score = []
- for eng_num_word_list in eng_num_words_list:
- score = []
- for eng_num_word in eng_num_word_list:
- result = template_score(eng_num_word,word_image)
- score.append(result)
- best_score.append(max(score))
- i = best_score.index(max(best_score))
- # print(template[i])
- r = template[i]
- results.append(r)
- continue
- return results
-
-
- word_images_ = word_images.copy()
- # 调用函数获得结果
- result = template_matching(word_images_)
- print(result)
- # "".join(result)函数将列表转换为拼接好的字符串,方便结果显示
- print( "".join(result))
-
-
-
- height,weight = origin_image.shape[0:2]
- print(height)
- print(weight)
-
- image_1 = origin_image.copy()
- cv2.rectangle(image_1, (int(0.2*weight), int(0.75*height)), (int(weight*0.9), int(height*0.95)), (0, 255, 0), 5)
-
- #设置需要显示的字体
- fontpath = "font/simsun.ttc"
- font = ImageFont.truetype(fontpath,64)
- img_pil = Image.fromarray(image_1)
- draw = ImageDraw.Draw(img_pil)
- #绘制文字信息
- draw.text((int(0.2*weight)+25, int(0.75*height)), "".join(result), font = font, fill = (255, 255, 0))
- bk_img = np.array(img_pil)
- print(result)
- print( "".join(result))
- plt_show0(bk_img)
复制代码 |