一、Keras中保存与读取的重要函数
1、model.save
model.save用于保存模型,在保存模型前,首先要利用pip install安装h5py的模块,这个模块在Keras的模型保存与读取中常常被使用,用于定义保存格式。 完成安装后,可以通过如下函数保存模型。 2、load_model load_model用于载入模型。 具体使用方式如下: - model = load_model("./model.hdf5")
复制代码
代码: - import numpy as np
- from keras.models import Sequential,load_model,save_model
- from keras.layers import Dense,Activation ## 全连接层
- from keras.datasets import mnist
- from keras.utils import np_utils
- from keras.optimizers import RMSprop
- # 获取训练集
- (X_train,Y_train),(X_test,Y_test) = mnist.load_data()
- # 首先进行标准化
- X_train = X_train.reshape(X_train.shape[0],-1)/255
- X_test = X_test.reshape(X_test.shape[0],-1)/255
- # 计算categorical_crossentropy需要对分类结果进行categorical
- # 即需要将标签转化为形如(nb_samples, nb_classes)的二值序列
- Y_train = np_utils.to_categorical(Y_train,num_classes= 10)
- Y_test = np_utils.to_categorical(Y_test,num_classes= 10)
- # 构建模型
- model = Sequential([
- Dense(32,input_dim = 784),
- Activation("relu"),
- Dense(10),
- Activation("softmax")
- ]
- )
- rmsprop = RMSprop(lr = 0.001,rho = 0.9,epsilon = 1e-08,decay = 0)
- ## compile
- model.compile(loss = 'categorical_crossentropy',optimizer = rmsprop,metrics=['accuracy'])
- print("\ntraining")
- cost = model.fit(X_train,Y_train,nb_epoch = 2,batch_size = 100)
- print("\nTest")
- # 测试
- cost,accuracy = model.evaluate(X_test,Y_test)
- print("accuracy:",accuracy)
- # 保存模型
- model.save("./model.hdf5")
- # 删除现有模型
- del model
- print("model had been del")
- # 再次载入模型
- model = load_model("./model.hdf5")
- # 预测
- cost,accuracy = model.evaluate(X_test,Y_test)
- print("accuracy:",accuracy)
复制代码
|
我觉得彳亍
使用道具 举报